Wörterbuchnetz
Meyers Großes Konversationslexikon Bibliographische AngabenLogo textgrid zeno bmbf · Logo textgrid zeno bmbf · Logo textgrid zeno bmbf
 
Magnetisierungsfunktion bis Magnetīt (Bd. 6, Sp. 92 bis 93)
Abschnitt zurück Abschnitt vor
Artikelverweis Magnetisierungsfunktion, soviel wie magnetische Suszeptibilität (s. Meyers Magnetische Influenz, S. 84). Sie ist nur bei sehr schwach magnetisierbaren Körpern eine konstante, d. h. der induzierte Magnetismus ist der magnetisierenden Kraft im allgemeinen nicht proportional. Die M. ist z. B. auch abhängig von Zug- und Druckkräften, denen das Eisen unterworfen wird.
 
Artikelverweis 
Magnetisierungskonstante, s. Meyers Magnetisierungsfunktion.
 
Artikelverweis 
Magnetisierungskurve, eine krumme Linie, die den Zusammenhang zwischen der magnetisierenden Kraft (z. B. eines um einen Eisenkern herumgeführten elektrischen Stromes) und der bewirkten Magnetisierung (des Eisenkerns) graphisch darstellt. Die Kurve steigt anfangs fast geradlinig an, d. h. die Magnetisierung wächst bei kleiner magnetisierender Kraft ungefähr dieser proportional, dann folgt bei mittlern Kräften ein rascheres Ansteigen bis zu einem Wendepunkt, denn bei den höchsten Kräften wächst die Magnetisierung immer langsamer und nähert sich asymptotisch einem Maximalwert (Sättigung).
 
Artikelverweis 
Magnetisierungsspirale, s. Meyers Galvanische Spirale und Meyers Elektromagnetismus, S. 680.
 
Artikelverweis 
Magnetisierungszahl, s. Meyers Magnetische Influenz, S. 84.
 
Artikelverweis 
Magnetismus, einesteils die Fähigkeit, magnetische oder elektrodynamische Kräfte (s. Meyers Magnetische Kraft) auszuüben, die z. B. durch die Anziehung von weichem Eisen zum Ausdruck kommt, andernteils das Agens, das als Träger dieser Kraft gedacht wird u. scheinbar in einzelnen Punkten (Polen) angehäuft ist. Jedes Stück Eisen erlangt M. in der Nähe eines elektrischen Stromes durch dessen magnetomotorische Kraft, was Ampères Hypothese veranlaßte, ein besonderes magnetisches Agens oder Fluidum existiere überhaupt nicht, sondern werde nur vorgetäuscht durch elektrische Ströme (kreisende Elektronen) in den Molekülen. Weiches Eisen verliert den M. wieder, wenn es aus dem Bereiche des Stromes gebracht wird oder wenn dieser zu fließen aufhört, nahezu vollständig (temporärer M.). Harter Stahl, Gußeisen, Eisenoxyduloxyd (Magneteisenstein) und andre eisenhaltige Stoffe behalten ihn dagegen teilweise (permanenter M.) und vermögen deshalb ebenso wie elektrische Ströme in andern Eisenstücken M. hervorzurufen (»magnetische Influenz«, s. d.) und diese entsprechend an sich heranzuziehen. Beim Zerbrechen eines permanenten Magnets erweist sich jedes der Stückchen magnetisch, er erscheint also als ein Aggregat von Elementarmagneten oder magnetischen Molekülen. Ebenso müssen die Moleküle eines magnetisch influenzierten weichen Eisenstückes magnetisch polarisiert sein, d. h. jedes muß zwei entgegengesetzte Pole aufweisen, wie ein großer Magnet. Die wenigen Stoffe, die wie Eisen, wenn auch in geringerm Maße, magnetisch polarisierbar sind, heißen paramagnetische, die Stärke ihrer Polarisation wird bestimmt durch ihre Magnetisierungszahl und zur Messung derselben dient das Magnetometer. Wismut und andre Stoffe werden (gerade umgekehrt wie Eisen) von einem Magnet abgestoßen (Diamagnetismus). Die Stärke des Diamagnetismus wird bestimmt durch die Diamagnetisierungszahl und zu ihrer Messung dient das Diamagnetometer. Manche Stücke des natürlich vorkommenden Eisenoxyduloxyds (Magneteisensteins) besitzen aus unbekannter Ursache M. Ein solches, gewöhnlich in eine Armatur aus Eisen gefaßt, an der durch Influenz Pole hervortreten, heißt ein natürlicher Magnet; ein mit Hilfe eines solchen oder besser mittels eines elektrischen Stromes magnetisch gemachter Stahlstab dagegen ein künstlicher Magnet. Ein Magnetstab hat in der Regel zwei entgegengesetzte Pole an den Enden, dazwischen eine Indifferenzstelle. Frei beweglich aufgehängt (Magnetnadel), stellt er sich so, daß der eine Pol nach Norden, der andre nach Süden weist (Nord-, bez. Südpol). Gleichartige Pole zweier Magnetnadeln stoßen sich ab, entgegengesetzte ziehen sich an. Es lassen sich auch Magnetstäbe mit drei oder mehr Polen (Folgepunkten) herstellen, von denen je zwei aufeinanderfolgende entgegengesetzt und durch eine Indifferenzstelle getrennt sind. Künstliche Magnete erhalten gewöhnlich, um die Pole möglichst nahe zu bringen, Hufeisenform (Hufeisenmagnete) und werden, um möglichst große Tragkraft zu erzielen, aus mehreren einzelnen magnetisierten Lamellen zusammengesetzt (Blättermagnet). Näheres s. Meyers Magnetische Kraft, Meyers Elektrodynamische Kraft, Elektromagnetismus, Magnetische Influenz, Erdmagnetismus etc.
   Geschichtliches. Der Magnetstein hat nach Lukrez seinen Namen von der Stadt Magnesia, wo ihn die Griechen zuerst gefunden haben sollen. Plinius erzählt von einem Hirten, Magnes, der auf dem Berg Ida mit den eisernen Nägeln seiner Sohlen und der eisernen Spitze seines Hirtenstabes auf einem magnetischen Stein festgehalten wurde. Die Alten scheinen die Kunst verstanden zu haben, den natürlichen Magnet zu armieren und dadurch zu verstärken. Das Geheimnisvolle, das in dem Stein liegt, wurde namentlich von den Priestern vielfach ausgenutzt. Die Richtkraft des Magnets, die sich in einem frei beweglichen Magnetstäbchen offenbart, indem das eine Ende beständig nach Norden weist (s. Meyers Erdmagnetismus), war wenigstens den Chinesen schon sehr lange bekannt; sie benutzten magnetische Wagen, auf denen der magnetische Arm einer Menschengestalt unausgesetzt nach Süden wies, um sicher den Landweg durch die Grasebenen der Tatarei zu finden. Im 3. Jahrh. nach unsrer Zeitrechnung segelten schon chinesische Fahrzeuge im Indischen Ozean nach magnetischer Südweisung. 400 Jahre vor Kolumbus kannten die Chinesen bereits die Deklination. In Europa wird der Magnetstein zuerst gegen Ende des 11. Jahrh. von Are Frode in seiner Geschichte von der Entdeckung Islands erwähnt; man scheint den natürlichen Magnet an einem Faden aufgehängt zu haben und nannte ihn Leitstein (engl. leadstone). Gilbert erzählt, daß nach Flavius Blondus zuerst ums Jahr 1300 die Amalfitaner in Neapel den Schiffskompaß konstruiert und angewendet hätten, und zwar nach der Anleitung des Flavio Gioja; doch sei es wahrscheinlicher, daß die Kenntnis des Kompasses um das Jahr 1260 durch Paulus Venetus aus China nach Japan gebracht sei. Jedenfalls war der Seekompaß im südlichen Europa schon zu Anfang des 13. Jahrh. bekannt. 1266

[Bd. 6, Sp. 93]


kannte man auch in Norwegen die Magnetnadel, und wenige Jahre später wußte man, daß ungleichnamige Pole sich anziehen. In einem Briefe von Peter Adfiger wird ausführlich von der Deklination gesprochen, die später Kolumbus mit großer Bestürzung 200 Leguas von der Insel Ferro entfernt von neuem entdeckte. Kolumbus war der erste, der die Beobachtung machte, daß die Deklination an verschiedenen Orten ungleich stark ist. Genauere Bestimmungen der Deklination wurden erst um die Mitte des 16. Jahrh. gemacht, und 1543 entdeckte Georg Hartmann in Nürnberg die Inklination. Er fand auch das Gesetz der ungleichnamigen Pole und das Magnetisch werden eines Eisenstäbchens unter dem Einfluß des Erdmagnetismus. 1590 beobachtete Cäsar in Rimini den M. einer auf einem Kirchturm verrosteten Eisenstange. Um den M. zu erklären, hat man lange abenteuerliche Vorstellungen gehegt, und besonders glaubte man an nordische Magnetberge, denen kein Schiff sich nähern dürfe, ohne zu zerschellen, indem die Nägel durch den Magnet aus dem Holz herausgezogen würden. Erst Gilbert verwies 1600 diese Vorstellung ins Reich der Fabeln. Daß die Deklination sich an demselben Orte mit der Zeit ändere, wurde in London und Paris nachgewiesen, und 1732 entdeckte Graham auch die täglichen Variationen. Halley, der sich um die Theorie des M. sehr verdient gemacht hat, entwarf 1699 die isogonischen Linien, die übrigens schon Burrus gezogen haben soll. Die neuern Arbeiten über den M. knüpfen sich an die Namen Euler, Humboldt, Hansteen, Gauß, Weber, Lamont. Der Diamagnetismus wurde 1845 von Faraday entdeckt, neben dem als Forscher auf diesem Gebiet noch Plücker, Weber, Tyndall, Wiedemann und Verdet zu nennen sind. Über den sogen. tierischen oder Lebensmagnetismus s. Meyers Magnetische Kuren. Vgl. Lamont, Handbuch des M. (Leipz. 1867); Airy, Über den M. (a. d. Engl., Berl. 1873); Ferrini, Technologie der Elektrizität und des M. (deutsch, Jena 1879); Maxwell, Lehrbuch der Elektrizität und des M. (deutsch von Weinstein, Berl. 1883, 2 Bde.); Kleyer, Lehrbuch des M. und des Erdmagnetismus (Stuttg. 1885); Mascart und Joubert, Lehrbuch der Elektrizität und des M. (deutsch von Levy, Berl. 188688, 2 Bde.); Jamieson, Elemente des M. und der Elektrizität (deutsch, Leipz. 1891); Ewing, Magnetische Induktion in Eisen und verwandten Metallen (deutsch von Holborn und Lindeck, Berl. u. Münch. 1892); Benischke, M. und Elektrizität mit Rücksicht auf die Bedürfnisse der Praxis (das. 1896); Weiler, Wörterbuch der Elektrizität und des M. (Leipz. 1898); Niethammer, Magnetismus (Stuttg. 1901). S. auch die Literatur bei Magnetische Influenz.
 
Artikelverweis 
Magnetismus, freier, s. Meyers Elektrische Maßeinheiten, S. 641.
 
Artikelverweis 
Magnetismus, permanenter und remanenter, s. Meyers Elektromagnetismus, S. 681 f.
 
Artikelverweis 
Magnetismus, spezifischer, s. Meyers Magnetische Kraft, S. 88.
 
Artikelverweis 
Magnetismus der Gesteine, s. Meyers Gesteinsmagnetismus.
 
Artikelverweis 
Magnetīt, Mineral, soviel wie Magneteisenerz.

 

Eingabe
Wörterbuchtext:
Stichwort:
 
  

 

Artikel 91 bis 100 von 183 Nächste Treffer Vorherige Treffer
91) Koleda
 ... des heidnischen Festes der Wintersonnenwende getretene Feier der Zeit von Weihnachten bis zum Tage der heiligen drei Könige. Heutigestags versteht man
 
92) Krag
 ... Berl. 1897), »Rachel Strömme« (1898), »Aus den niedrigen Hütten« (1898), »Weihnachten«, »Marianne« (1899) und die unterhaltenden kulturhistorischen Romane: »Isaak Seehufen« (1900)
 
93) Kremser,
 ... mit Orchester (»Balkanbilder«, »Prinz Eugen«, »Das Leben ein Tanz«, »Altes Weihnachtslied«), Operetten, Gesänge für gemischten Chor, Lieder, Klaviersachen etc.
 
94) Krippe
 ... Pappe gefertigt. Seitdem der heil. Franziskus 1223 zur Feier des Weihnachtsfestes die erste K. errichtete, hat sich die fromme Gewohnheit, zur
 ... bayrische Nationalmuseum in München (vgl. darüber Hager , Die Weihnachtskrippe, Münch. 1901, illustriert). Mit dem Wort K. ( Crèche
 ... die erste K. errichtete, hat sich die fromme Gewohnheit, zur Weihnachtszeit Krippen (auch Präsepien genannt) zu bauen, in allen katholischen
 
95) Kurz
 ... 1905; auch in Hendels »Bibliothek der Gesamtliteratur«, Halle 1905); »Der Weihnachtfund« (Berl. 1855, 2. Aufl. 1862); »Erzählungen« (Stuttg. 185861, 3 Bde.)
 
96) Ladenschluß
 ... 40 von der Ortspolizeibehörde zu bestimmenden Tagen (meist um die Weihnachtszeit, bei Jahrmärkten, Kirchweihen, Messen etc.), jedoch bis spätestens 10 Uhr
 
97) Lametta
 ... hauptsächlich als Christbaum - L . zum Schmücken der Weihnachtsbäume und wird für diesen Zweck auch gefärbt, indem man sie
 
98) Lauff
 ... von O. Eckmann, das. 1897, 2. Aufl. 1898), »Advent«, drei Weihnachtsgeschichten (das. 1898, 4. Aufl. 1901), »Die Geißlerin«, epische Dichtung (das.
 
99) Lewald
 ... Deutschland und Frankreich« (das. 1880); »Helmar«, Roman (das. 1880); »Zu Weihnachten«, drei Erzählungen (das. 1880); »Vater und Sohn«, Novelle (das. 1881);
 ... die Frauen«, Briefe (das. 1870, 2. Aufl. 1875); »Nella, eine Weihnachtsgeschichte« (das. 1870); »Die Erlöserin«, Roman (das. 1873, 3 Bde.); »Benedikt«
 
100) Lostage
 ... im allgemeinen die »Zwölften«, d. h. die zwölf Tage zwischen Weihnachten (dem frühern Jahresanfang) und Epiphanias, weil nach der bis in
 ... Martin (10. November), Lucia (13., früher 25. Dezember), Weihnachten . In frühern Zeiten, in denen neben Bibel und Gebetbuch
 
Artikel 91 bis 100 von 183 Nächste Treffer Vorherige Treffer