Wörterbuchnetz
Meyers Großes Konversationslexikon Bibliographische AngabenLogo textgrid zeno bmbf · Logo textgrid zeno bmbf · Logo textgrid zeno bmbf
 
Magnetische Kapazität bis Magnetische Observatorien (Bd. 6, Sp. 85 bis 90)
Abschnitt zurück Abschnitt vor
Artikelverweis Magnetische Kapazität, s. Meyers Elektromagnetismus, S. 681.
 
Artikelverweis 
Magnetische Kraft, die von magnetischen Massen ausgeübte Kraft, ihrem Wesen nach identisch mit »elektrodynamischer Kraft« (s. d.). Bestreut man einen magnetisierten Stahlstab (Magnetstab) mit Eisenfeile, so bleibt diese, Bärte bildend, vorzugsweise an seinen beiden Enden hängen, während gegen die Mitte zu immer weniger und in der Mitte selbst gar keine Eisenfeile haftet; die beiden Enden, an denen sich die Anziehung am kräftigsten äußert, werden die Pole, die Mitte, wo keine Anziehung stattfindet, wird der Äquator oder die indifferente Stelle (Indifferenzpunkt) des Magnets genannt; die Verbindungslinie der beiden Pole heißt seine magnetische Achse. Wird ein Magnetstab in seiner Mitte an einem Kokonfaden aufgehängt, so daß er sich in horizontaler Ebene drehen kann, so stellt sich seine Achse, vermöge einer Einwirkung, welche die Erde als Ganzes auf ihn ausübt, in eine Richtung ein, die von der Südnordrichtung nur wenig abweicht; derjenige seiner Pole, der sich stets nach N. wendet, heißt deshalb der Nordpol, der entgegengesetzte der Südpol.

[Bd. 6, Sp. 86]


Nähert man den Nordpol eines in der Hand gehaltenen dem Nordpol eines aufgehängten Magnets, so wird der letztere abgestoßen; ebenso stößt der Südpol des Handmagnets den Südpol des aufgehängten ab. Dagegen wird der Südpol des aufgehängten vom Nordpol des Handmagnets und ebenso der Nordpol des erstern vom Südpol des letztern angezogen. Es ergibt sich also das Gesetz: gleichnamige Pole stoßen sich ab, ungleichnamige ziehen sich an. Da eine Kraftwirkung, die wir stets mit der Wirkung unsrer Muskelkraft vergleichen, für uns nur begreiflich wird, wenn wir uns ein Wesen vorstellen können, das diese Kraft ausübt (so wie unser Ich die Muskelkraft ausübt; nur in solchem Falle nämlich sind wir imstande, in Gedanken die Wirkung selbst hervorzubringen, wie es nötig ist, wenn wir mit Recht sagen wollen, daß wir den Vorgang begriffen haben), so denken wir uns als das Wesen, das die m. K. ausübt, einen seinen unsichtbaren und unwägbaren Stoff, dessen Menge als magnetische Masse bezeichnet wird. Diese Vorstellungsweise ist jedenfalls unrichtig, denn der Umstand, daß magnetische Kräfte auch von elektrischen Strömen ausgeübt werden, zeigt, daß die Annahme eines besondern Agens zur Erklärung der magnetischen Wirkungen unnötig und unzulässig ist. Nichtsdestoweniger kann man sich unbeschadet der Richtigkeit der Folgerungen jener Vorstellungsweise bedienen, wenn man sich so ausdrückt, die Erscheinungen gestalten sich derart, als ob magnetische Massen vorhanden wären. Bricht man einen Magnetstab mitten entzwei, so bildet jedes Bruchstück wieder einen vollständigen Magnet mit zwei gleich starken Polen, indem an der Trennungsstelle zwei neue Pole entstehen, von denen jeder dem bereits vorhandenen Pol des entsprechenden Bruchstücks entgegengesetzt ist; wie weit man diese Teilung auch fortsetzen mag, jedes noch so kleine Bruchstück eines Magnets erweist sich wieder als vollständiger Magnet. Dieses Verhalten führt zu der Annahme, daß jedes kleinste Teilchen oder Molekül eines Magnets selbst schon ein Magnet mit zwei entgegengesetzten Polen, ein Molekularmagnet (Elementarmagnet), sei. Sie enthält keinen Widerspruch dagegen, daß die magnetische Wirkung nur an den Enden eines Magnetstabes sich offenbart, sondern gibt davon in befriedigender Weise Rechenschaft. Denkt man sich nämlich der Einfachheit wegen, ein dünnes Magnetstäbchen bestehe aus einer einzigen Reihe von Molekularmagneten, deren Achsen alle in derselben geraden Linie liegen, und deren gleichnamige Pole alle nach derselben Seite gewendet sind, so werden überall auf der ganzen Länge des Stabes zwei entgegengesetzte Pole der benachbarten Molekularmagnete zusammenstoßen, deren anziehende und abstoßende Wirkungen sich nach außen hin gegenseitig aufheben; nur an den beiden Enden des Stabes werden die freien Pole der letzten Moleküle wirksam bleiben. Sind die Elementarmagnete in der gedachten Weise angeordnet, so heißt die Magnetisierung longitudinal; schließen sie sich aber zu Ringen um die Achse des Stabes zusammen, was z. B. eintritt, wenn man einen elektrischen Strom längs der Achse hindurchleitet, so heißt die Magnetisierung zirkular. Im letztern Falle macht sich, obschon Magnetismus vorhanden ist, nach außen keine m. K. bemerkbar.
   Bei einem dicken Magnetstab ist der sogen. freie Magnetismus (vgl. Magnetische Influenz) auf einen größern Teil der Polflächen mit gegen die Indifferenzzone hin abnehmender Dichte verteilt. Für die Wirkung nach außen kann man sich (wenigstens für nicht zu kleine Abstände) diese magnetischen Massen (Mengen) durch eine einzige in deren Schwerpunkt, dem Pol, ersetzt denken, aus gleichen Gründen wie man sich z. B. die Masse eines Weltkörpers in dessen Schwerpunkt konzentriert denken kann.
   Das Prinzip der Messung magnetischer Massen (magnetischer Mengen, Polstärken) gründet sich auf die Untersuchungen Coulombs über die Kraftwirkung zwischen zwei Magnetpolen. Tariert man einen langen dünnen Magnetstab mit nahezu punktförmigen Polflächen vertikal hängend auf einer seinen Wage (magnetische Wage, Fig. 1) und bringt senkrecht darunter einen zweiten solchen Magnet M an, so wird die Kraft zwischen den benachbarten Polen, je nachdem sie eine abstoßende oder anziehende ist, eine scheinbare Vermehrung oder Vermindernug des Gewichts bewirken, die durch Auflegen oder Wegnehmen von Gewichten auf die Wagschale kompensiert u. dadurch gemessen werden kann. Vereinigt man wie bei dem unteren Magnet in Fig. 1 m solche dünne Magnetstäbchen gleicher Beschaffenheit zu einem einzigen Magnet (magnetisches Magazin), so ist die Kraftwirkung die m-fache, da allgemein Kräfte in ihren Wirkungen sich nicht stören. Man kann also umgekehrt schließen, daß ein Pol, der die m-fache Kraftwirkung ausübt, die m-fache Stärke oder m-fache magnetische Masse hat. Würde die Stärke irgend eines bestimmten Magnetstabes als 1 bezeichnet, ebenso wie man die Länge eines bestimmten Platinstabes (des Normalmeiers in Paris) als 1 (1 m) bezeichnet, so könnte man durch derartige Vergleichung der Kraftwirkungen die Stärke irgendwelcher gegebener Magnetstäbe in Zahlen ausdrücken. Da nun aber die Kraft eines Magnets leicht durch verschiedenartige Einflüsse geändert werden kann, somit von dem Normalmagnet nicht wie von dem Normalmeter Kopien genommen werden können, die im praktischen Gebrauch ihren Wert behalten, so ist die Festsetzung einer Einheit der Polstärke auf solchem Wege nicht möglich.
   Gibt man auch dem feststehenden Pol eine andre, etwa die M-fache Stärke, so wird die Kraft aus gleichem Grunde M-mal so groß. Vergrößert man den Abstand der Pole auf das r-fache, so erweist sich die Kraft, wie Coulomb gezeigt hat, umgekehrt proportional r'. Ist der Abstand = 1 cm und sind die beiden Polstärken einander gleich, so ist die Kraft nur von dieser Polstärke abhängig; man bezeichnet diejenige Polstärke oder magnetische Masse als 1 (1 CGS). für welche die Kraft = 1 Dyne ist. Hätte der eine Pol die Stärke m, der andre die Stärke M, so wäre die Kraft m. M Dynen und die Kraft K im Abstand r cm:

Clausius hat eine andre magnetische Einheit

[Bd. 6, Sp. 87]


empfohlen, die das 108-fache dieser gewöhnlichen sog. CGS-Einheit ist, und hat ihr den Namen Weber gegeben zu Ehren von Wilh. Weber, der in Gemeinschaft mit Gauß in Göttingen 1833 diese absolute Messung der magnetischen Masse eingeführt hat (s. Meyers Elektrische Maßeinheiten, S. 641). Wäre die eine Polstärke m, die andre M Weber und der Abstand 1 m, so wäre somit

Ist M = m, so wird K = 107/g x m2/r2, also m = r. v(K. g)/107 Weber. Man kann demnach im Prinzip mittels einer gewöhnlichen Wage die Polstärke eines von zwei gleichen Magneten in Weber oder gewöhnlichen Einheiten (= 10-e Weber) finden und damit dann auch die jedes beliebigen andern Magnets. Coulomb bediente sich zu solchen Versuchen der sehr empfindlichen Drehwage, da punktförmige Polflächen, wie sie angenommen wurden und zur genauen Bestimmung von r vorhanden sein müssen, nur bei sehr dünnen, langen Magneten zu erzielen sind, deren Kraftwirkung natürlich nur schwach ist. (Ein andres Verfahren ist die Methode der Beeinflussung der Schwingungen einer Magnetnadel, die nach gleichen Gesetzen wie Pendelschwingungen sich vollziehen, also wie diese rascher oder langsamer werden, wenn die wirksame Kraft größer oder kleiner wird, wenn also zu der Wirkung des Erdmagnetismus noch die des zu untersuchenden Magnets hinzukommt.) Ein Pol von der Stärke 1 Weber wirkt auf einen zweiten gleich starken in 1 m Abstand mit der Kraft 107/g kg, also nahezu 1 Mill. kg oder 1000 Ton. So starke Magnete lassen sich nicht entfernt herstellen, das Weber ist somit für den gewöhnlichen Gebrauch nicht geeignet. Zweckmäßiger wäre das Mikroweber (1 Millionstel Weber), gewöhnlich benutzt man aber aus schon angegebenem Grunde den 100. Teil von 1 Mikroweber (1 Zentimikroweber), die CGS-Einheit. Der Vorzug des Weber besteht darin, daß es zu den übrigen in der Technik gebräuchlichen elektrischen und magnetischen Einheiten in einfacher Beziehung steht.
   Der Raum in der Nähe eines Magnets heißt das magnetische Feld; die Kraft, gemessen in Dynen, die auf einen Pol von der Stärke 1 (Zentimikroweber) ausgeübt wird, die Stärke des Feldes. Zur Messung kann z. B. die magnetische Wage dienen. (Wollte man die Feldstärke in Kilogrammen [Gewicht] ausdrücken, so müßte man, da sie eine vom Ort unabhängige Zahl ist, das Gewicht eines Kilogrammstücks aber mit dem Orte, wo man sich befindet, wechselt, etwa die Kraft auf die veränderliche magnetische Masse g/107 Weber als Einheit wählen.) Die Richtung des Feldes, d. h. der anziehenden, bez. abstoßenden Kräfte an einer bestimmten Stelle, wird durch die Richtung einer dahin gebrachten kleinen, nach allen Richtungen um ihren Schwerpunkt drehbaren (etwa in einem Cardanischen Ringsystem aufgehängten oder in Wasser schwebenden, durch eine leichte Hülle spezifisch gleich schwer gemachten) Magnetnadel bestimmt, da sich ihre Pole nach entgegengesetzten Richtungen zu bewegen suchen, somit Gleichgewicht eintritt, wenn sie beide auf der Kraftrichtung, der Kraftlinie, liegen, da dann das Drehmoment der beiden Kräfte = 0 wird. Eine aus Kraftlinien gebildete Röhre heißt Kraftröhre; an jeder Stelle einer solchen ist die m-Kraft dem Querschnitt umgekehrt proportional. Man kann die Kraftlinien (magnetischen Kurven) sichtbar machen, wenn man z. B. ein steifes Papier über den Magnet legt, mit seinen Eisenfeilspänen bestreut und erschüttert, so daß die Eisenteilchen für einen Moment beweglich werden (Fig. 2). Sie ordnen sich dann zu den sogen. Feilspänkurven oder Kraftlinienbildern, die den wahren Verlauf der Kraftlinien um so besser wiedergeben, je spärlicher die Menge der Feilspäne war. Benutzt man Lichtpauspapier, so können die Kurven leicht durch Belichtung dauernd fixiert werden. Ein frei beweglicher, punktförmiger Pol würde sich von einem zweiten gleichnamig magnetischen feststehenden in der Richtung des Radius (der Kraftlinie) zu entfernen suchen. Zum Heranschieben desselben aus unendlicher Entfernung ist also ein Arbeitsaufwand nötig, ganz wie bei Näherung zweier elektrischer Punkte, der zur Aufspeicherung potentieller Energie führt. Für zwei Pole von der Stärke mund M (Zentimikroweber) im Abstand r cm beträgt die potentielle Energie m/r M Erg, also für M = 1 m/r Erg. Diese potentielle Energie der magnetischen Masse 1 im Abstand r cm nennt man das magnetische Potential in diesem Abstand. Für den Abstand 2, 3, 4... x r wäre es nur 1/2, 1/3, 1/4... x m/r. Die Flächen gleichen Potentials oder Niveauflächen sind Kugelflächen und werden von den Kraftlinien senkrecht durchschnitten. Wie im Fall der Elektrizität gilt letzteres allgemein. Die Niveauflächen für kompliziertere Fälle, z. B. für zwei feststehende Pole findet man, indem man zunächst für jeden Punkt das Potential, das von jedem der beiden Pole herrührt, berechnet und dann die Werte addiert oder subtrahiert, je nachdem die beiden Pole gleichnamig oder ungleichnamig magnetisch sind, und schließlich die Punkte, für die sich gleiches Resultat ergibt, miteinander verbindet. Nach obiger Gleichung besitzt ein Pol von M Weber (= M. 10° CGS) im Abstand r m (= 100. r cm) vom Pol m Weber (= m. 103) die potentielle Energie P = m. 108 x M. 108/r. 100 Erg, da 1 Erg = 1/g. 105. 102 kgm, P = 107/g . m/r . M kgm. Ein solcher Betrag an mechanischer Arbeit könnte gewonnen werden, wenn man z. B. die abstoßende Kraft der beiden Pole benutzen würde, eine Maschine zu treiben.
   Um einen Überblick über die Beschaffenheit eines magnetischen Feldes zu erhalten, zieht man die Kraftlinien in solcher Dichte, daß sich an der Basis einer jeden die magnetische Masse 1/4π CGS (bez. 1/4π Weber) befindet. Die durch 1 qcm (bez. 1 qm) hindurchgehende Zahl Kraftlinien ist dann gleich der Feldstärke in den oben bezeichneten Einheiten. Bringt man ein Stück weiches Eisen in ein Magnetfeld, so werden die magnetischen Kraftlinien in das Eisen hineingezogen und verlaufen in demselben dichter gedrängt als außerhalb, oder die Zahl der Kraftlinien für eine Einheit des Querschnittes ist im Eisen größer als in

[Bd. 6, Sp. 88]


der umgebenden Luft, weil das Eisen durch Influenz selbst magnetisch wird (s. Meyers Magnetische Influenz).
   Ist m die Polstärke eines Magnetstabes und H die Stärke des magnetischen Feldes, so ist m H (bez. 107g. m. H) die an jedem Pole wirkende Kraft in Dynen (bez. Kilogrammen). Beispielsweise ist die Horizontalintensität des Erdmagnetismus = 0,2 (bez. 0,2. 10-4), somit die Kraft, mit welcher der eine Pol einer Magnetnadel von der Stärke 1 (bez. 10-° Weber) nach N., der andre nach S. gezogen wird: 0,2 Dynen

Steht die Magnetnadel senkrecht zu den Kraftlinien und ist l ihre Länge, so ist das Drehmoment des Kräftepaares = H. m. l. Das Drehmoment für die Feldstärke 1 wäre ml. Man nennt dieses das magnetische Moment der Nadel. Intensität der Magnetisierung ist das magnetische Moment für 1 ccm, spezifischer Magnetismus das magnetische Moment für 1 g der Substanz. Vgl. Ebert, Magnetische Kraftfelder (2. Aufl., Leipz. 1905).
 
Artikelverweis 
Magnetische Kraftlinien. Die von einem Magnetpol auf einen andern in seiner Nähe befindlichen ausgeübte Kraft folgt bestimmten Richtungen, die man finden kann, wenn man in den Bereich seiner Wirkung, sein Kraftfeld, eine kleine, an einem Faden aufgehängte Magnetnadel bringt und deren Stellung beobachtet. Übersichtlicher erhält man sie, wenn man auf den Pol ein Kartonblatt legt, es mit durchgesiebten Eisenfeilspänen bestreut und leicht erschüttert. Die Eisenteilchen ordnen sich dann in Linien, indem sie zu Magneten werden, die schwerern liegen bleiben und die leichtern an sich heranziehen. So zeigt sich das Kraftfeld von Linien durchzogen, die von einer einzigen nicht zu ausgedehnten Oberfläche sich wie die Lichtstrahlen geradlinig im Raum ausbreiten; in welcher Lage man auch den Magnet unter das Kartonblatt legt, immer erhält man das nämliche Linienbild. Ein jeder Magnet besitzt im allgemeinen zwei entgegengesetzte Pole, die bei allen technischen Anwendungen einander so nahe liegen, daß der eine das Feld des andern beeinflußt. In welcher Weise dies geschieht, zeigen die, wie oben angegeben, auf einem Kartonblatt, das beide Pole bedeckt, erhaltenen Linien (Fig. 1). Von beiden Polenden strahlen die Linien aus, um sich von dem einen in immer steilern Bogen dem andern zuzuwenden. An die Kanten in der Nähe der Pole setzen sich die Eisenteilchen in größerer Zahl an, da an ihnen die magnetische Wirkung besonders stark ist. An ihnen heben sie sich, der Richtung der Kraftlinien im Raum folgend, empor und fallen erst zusammen, wenn das Kartonblattabgehoben wird. Man kann deshalb den Verlauf der Kraftlinien im Magnet in der Nähe der Pole nicht erkennen, wohl aber in der die Mitte des Stabes einnehmenden Indifferenzzone. Hier verlaufen sie der Achse des Stabes parallel. Da eine vom Strom durchflossene Drahtspule, auch wenn sie nicht durch Einlegen eines Eisenkerns zum Elektromagnet gemacht ist, sich wie ein Magnet verhält, so kann man, wenn man das Kartonblatt mit den Eisenfeilspänen in sie hineingeschoben hat und den Strom schließt, den Verlauf der Linien in allen Teilen des Magnetinnern beobachten. Aus Fig. 2, welche die Spule mit den Linien darstellt, ergibt sich, daß sie das Spuleninnere parallel und in gleichem Abstand durchziehen, ein homogenes Feld bilden, sich in ihrem Verlaufe wendend geschlossene Kurven darstellen. Man denkt sich nun in der Spule, also im Magnet, die Linien vom Südpol nach dem Nordpol hin verlaufend, also von diesen sich ausbreitend, wie die Pfeilspitzen andeuten, und nennt den in der Figur links gelegenen Nordpol den positiven Pol. Ein vollständiges Bild der magnetischen Kraftwirkungen würde man erhalten, wenn man die Figur um die horizontale Achse der Spule drehen würde, die Kraftlinien sind also die Durchschnitte von ringförmigen Gebilden mit der Ebene der Zeichnung. Außer zur Bestimmung der Richtung der magnetischen Kraft an irgend einem Punkte des Feldes können die Kraftlinien auch benutzt werden, seine daselbst vorhandene Stärke bestimmen zu lassen. Man hat dazu nur eine Einheit zu wählen und nimmt als solche die Kraft eines Einheitpoles, d. h. eines Poles, der einen ihm gleichen in einem Abstand von 1 cm mit der Kraft von 1 Dyne, also rund von 1 mg anzieht (s. Meyers Maßsystem, absolutes). Diese Kraft denkt man sich in jeder Kraftlinie wirkend, auf den Einheitspol aber rechnet man eine Kraftlinie. Durch die Anzahl der einem Magnet zukommenden Kraftlinien kann man somit dessen Stärke angeben. So läßt sich Schmiedeeisen mit Hilfe des elektrischen Stromes so stark magnetisieren, daß etwa 18,000 Kraftlinien 1 qcm durchsetzen, ein Stab von solchem Querschnitt also die Kraft von 18,000 mg ausüben kann, während Gußeisen bereits bei 9000 Kraftlinien auf 1 qcm gesättigt ist. An der Grenzfläche eines stärkern und eines weniger stark magnetischen Körpers werden also die in diesen eindringenden Kraftlinien auseinandertreten müssen, es wird dort Streuung stattfinden.
   Aus dem Verlauf und der Dichtigkeit der Kraftlinien eines magnetischen Feldes läßt sich die Brauchbarkeit und die Wirkungsweise der in der Elektrotechnik

[Bd. 6, Sp. 89]


verwendeten Eisenkörper beurteilen. Fig. 3 zeigt die in einem Hufeisenmagnet auftretenden magnetischen Kraftlinien. Ihre Streuung an den Polen hört auf, sobald man sie durch einen eisernen Anker verbindet, das Eisen zieht die Linien in sich hinein. Legt man also in das Feld zwischen den Polen N und S eines starken Magnets (Fig. 4) einen eisernen Ring, so nehmen die Kraftlinien den dort gezeichneten Verlauf. Der Raum innerhalb des Ringes bleibt frei oder fast frei von Linien, ist somit unmagnetisch. Darauf beruht die Schirmwirkung des Eisens, die gestattet, in einem magnetischen Felde, z. B. auf einem eisernen Schiffe, Kompaßnadeln, ja empfindliche Galvanometer zu benutzen. Auch die Wirkung des Ankereisens der dynamoelektrischen Maschinen (s. Elektrische M.), das Fig. 4 zwischen den Magnetpolen darstellt, wird nun leicht verständlich. Der gezeichnete Grammesche Ring zieht sie in sich hinein, so daß die Drähte des äußern Teiles seiner Wickelung bei einer durch den Pfeil angedeuteten Drehung sie in senkrechter Richtung durchschneiden. Dabei wird in ihnen ein starker Strom erregt, stärker, als wenn der Schnitt in schiefer Richtung erfolgte. Ein ebensolcher, aber entgegengesetzt gerichteter würde auch auf der innern Seite des Ringes entstehen, wenn dort die Kraftlinien austreten könnten. Da der Anker einer dynamoelektrischen Maschine, sobald er magnetisch wird, ein eignes, wenn auch schwaches Magnetfeld hervorruft, dessen Linien senkrecht auf dem des Feldmagnets stehen, ergibt sich durch das Zusammentreffen beider ein Feld, das für schmale Pole N und S in Fig. 5 dargestellt ist. Die Figur zeigt, daß die Linie B B, in der im Ankerring des Nordmagnetismus n n in Südmagnetismus s s übergeht und die bei ruhendem Ring das Magnetfeld halbiert, bei einer im Sinne des großen Pfeiles eintretenden Drehung verschoben wird, die Bürsten also auch im Sinne der Drehung etwas verschoben werden müssen, wenn die Maschine funkenlos laufen soll. Die Schraubenlinien auf dem Ringe bedeuten die Wickelung, die Pfeile die Richtung der in ihr erregten Ströme. Vgl. H. Ebert, Magnetische Kraftfelder (2. Aufl., Leipz. 1905); Ewing, Magnetische Induktion in Eisen und verwandten Metallen (deutsch von Holborn u. Lindeck, Berl. u. Münch. 1892).
 
Artikelverweis 
Magnetische Kristallachse, s. Meyers Magnetische Influenz, S. 85.
 
Artikelverweis 
Magnetische Kuren (Magnetotherapie), auf Anwendung des sogen. tierischen Magnetismus beruhende Heilversuche. Der tierische Magnetismus (Lebens-, Zoo- oder Biomagnetismus, Mesmerismus) galt im Sinne der ältern Naturwissenschaft als eine Kraft, die man mit dem Magnetismus verglichen hat, weil sie, wie dieser, durch Bestreichen geweckt würde und ohne direkte Berührung wirken sollte. In ein System brachte die Lehre vom sogen. tierischen Magnetismus Meyers Mesmer (s. d.); er studierte um 1772 die Wirkung des Magnets auf den menschlichen Körper und bemerkte, daß auch ohne Anwendung des Magnets, durch bloßes Streichen mit den Händen, eigentümliche Wirkungen hervorgebracht wurden, die eine rätselhafte, auf den menschlichen Organismus wirkende Kraft zu bekunden schienen. Er machte davon Anwendung zur Heilung von Krankheiten und erregte durch seine magnetischen Kuren großes Aufsehen. Wienholt, Olbers, Böckmann, Gmelin u. a. suchten die Lehre von dieser Kraft wissenschaftlich zu begründen. Wolfart gründete eine magnetische Heilanstalt in Berlin; Kiefer, Hufeland, Passavant, Baader, Ennemoser u. a. schrieben anerkennend über tierischen Magnetismus. Man nahm an, daß den Fingern, den Augen, dem Hauch des Magnetiseurs ein eigentümliches ätherisches Fluidum entströme, das durch den bloßen Willen in weite Ferne wirken könnte und in der »magnetisierten« Person merkwürdige Nervenzustände erzeugte. Kiefer bezeichnete die bezügliche Kraft als Tellurismus oder, soweit sie von Metallen ausströmt, als Siderismus; Gmelin, Passavant u. v. a. wollten den Nervenäther darin erkennen; viel Beifall fand später Reichenbach, der in der Ausströmung der Hände eine wohlcharakterisierbare Naturkraft, das Od (s. d.), nachzuweisen suchte. Die in verschiedener Weise und besonders über die leidenden Körperteile geführten Striche erzeugten oft einen mehr oder weniger tiefen Schlaf, der später durch die Studien über den Meyers Hypnotismus (s. d.) seines geheimnisvollen Charakters entkleidet worden ist. Bei manchen Personen sollte der Schlaf bald in den Zustand des Schlafwachens oder Meyers Somnambulismus (s. d.) übergehen, in dem Fragen beantwortet werden und das geistige Vermögen der Betreffenden, von den gewöhnlichen Fesseln befreit, nicht nur den Zustand des eignen Körpers völlig durchschauen, sondern auch die geeigneten Heilmittel für denselben erkennen sollte. In gesteigerten Zuständen dieses Schlafwachens sollte es zu einem Hochschlaf oder Hellsehen kommen, durch das der Schlafende die Vergangenheit, Zukunft und räumliche Ferne durchdränge. Mit den Fingerspitzen wurden verschlossene Briefe gelesen und alle Dinge erkannt, die man den betreffenden Personen wohlverschlossen auf die Magengrube legte; hieraus wurde geschlossen, daß das sympathische Nervengeflecht mit seinen Gang lien das eigentliche Organ für diese geheimnisvollen Seelenkräfte sei. Nach Beendigung des somnambulen Zustandes fehlte meist alle Erinnerung an das, was in ihm geschah. Infolge der magnetischen Manipulation und des dadurch bewirkten Somnambulismus sollte zwischen Magnetiseur und Somnambule ein magnetischer Rapport entstehen, eine Art von Lebens- und Empfindungsgemeinschaft, vermöge deren der Wille des Magnetiseurs auf die organischen und geistigen Funktionen des Somnambulen einen bezwingenden Einfluß erhält, während dem letztern gleichzeitig die Seelenzustände des Magnetiseurs direkt zum Bewußtsein kommen. Selbst leblose Gegenstände sollten zu Trägern des tierischen Magnetismus gemacht werden können, und in dieser Auffassung bediente sich Mesmer eines magnetischen Baquets, eines mit Wasser und Eisenfeilspänen gefüllten hölzernen oder gläsernen Bottichs, den er magnetisierte, und durch den eine ganze Anzahl von Kranken

[Bd. 6, Sp. 90]


gleichzeitig magnetisiert wurde. Das Studium des Hypnotismus hat gezeigt, daß jene Erscheinungen nicht ganz dem Gebiete der Selbsttäuschung und des Betrugs angehören, wie man vor einigen Jahrzehnten annahm; man begreift jetzt, daß ausgezeichnete Ärzte und Naturforscher an eine geheimnisvoll wirkende Kraft des Magnetiseurs geglaubt haben. Da die Experimente oft mit hysterischen, schon infolge ihrer Krankheit zu Täuschungen hinneigenden Personen gemacht wurden, so erklärt sich, daß in einer Zeit, die schon an sich zu mystischer Auffassung der Dinge bereit war, aus auffallenden Erscheinungen falsche Schlüsse gezogen wurden, auf die sich ein vollständiges Lehrsystem aufbaute. Selbst gewisse Heilwirkungen bei Nervenübeln u. dgl. können von den betreffenden Manipulationen erwartet werden, aber nicht eine Heilung aller möglichen Übel oder gar prophetische Eingebungen des Heilmittels und die sonstigen übernatürlichen Leistungen. Über Anwendung starker magnetischer Wellen zu Heilzwecken (Permeaelektrotherapie) s. Meyers Elektrotherapie. Vgl. Obersteiner, Der Hypnotismus in seiner medizinischen und forensischen Bedeutung (Wien 1887); Binet und Féré, Le magnétisme animal (Par. 1887); Heidenhain, Der sogen. tierische Magnetismus (4. Aufl., Leipz. 1880); Sallis, Der tierische Magnetismus und seine Genese (das. 1887); H. R. P. Schröder, Geschichte des Lebensmagnetismus und des Hypnotismus (das. 1899) sowie die unter »Hypnotismus« angegebene Literatur. Nur von historischem Interesse, nicht aber von wissenschaftlichem Werte sind heute die Schriften von Mesmer, Wolfart, Stieglitz, Nees v. Esenbeck, Kiefer, Ennemoser, Carus, Perty u. a.
 
Artikelverweis 
Magnetische Kurve s. Meyers Magnetische Kraft.
 
Artikelverweis 
Magnetische Masse, Menge s. Meyers Magnetische Kraft.
 
Artikelverweis 
Magnetische Meridiane, s. Meyers Erdmagnetismus, S. 17.
 
Artikelverweis 
Magnetische Neigung s. Meyers Erdmagnetismus, S. 16.
 
Artikelverweis 
Magnetische Parallelkreise s. Meyers Erdmagnetismus, S. 16.
 
Artikelverweis 
Magnetische Observatorien, meist staatliche Institute zur Beobachtung des Erdmagnetismus der Deklination, Inklination und Horizontalintensität, und zur Ausführung magnetischer Landesaufnahmen, sind meist mit astronomischen und meteorologischen Observatorien verbunden und dienen vor allem wissenschaftlichen, aber auch nautischen und bergbaulichen Interessen. Gauß und Weber begründeten 1833 ein magnetisches Observatorium in Göttingen, auf Humboldts Anregung wurden in den 30er Jahren des 19. Jahrh. in Rußland, andre fast gleichzeitig in England und den englischen Kolonien gegründet. Gegenwärtig bestehen m. O. in allen Kulturstaaten.

 

Eingabe
Wörterbuchtext:
Stichwort:
 
  

 

Artikel 91 bis 100 von 183 Nächste Treffer Vorherige Treffer
91) Koleda
 ... des heidnischen Festes der Wintersonnenwende getretene Feier der Zeit von Weihnachten bis zum Tage der heiligen drei Könige. Heutigestags versteht man
 
92) Krag
 ... Berl. 1897), »Rachel Strömme« (1898), »Aus den niedrigen Hütten« (1898), »Weihnachten«, »Marianne« (1899) und die unterhaltenden kulturhistorischen Romane: »Isaak Seehufen« (1900)
 
93) Kremser,
 ... mit Orchester (»Balkanbilder«, »Prinz Eugen«, »Das Leben ein Tanz«, »Altes Weihnachtslied«), Operetten, Gesänge für gemischten Chor, Lieder, Klaviersachen etc.
 
94) Krippe
 ... Pappe gefertigt. Seitdem der heil. Franziskus 1223 zur Feier des Weihnachtsfestes die erste K. errichtete, hat sich die fromme Gewohnheit, zur
 ... bayrische Nationalmuseum in München (vgl. darüber Hager , Die Weihnachtskrippe, Münch. 1901, illustriert). Mit dem Wort K. ( Crèche
 ... die erste K. errichtete, hat sich die fromme Gewohnheit, zur Weihnachtszeit Krippen (auch Präsepien genannt) zu bauen, in allen katholischen
 
95) Kurz
 ... 1905; auch in Hendels »Bibliothek der Gesamtliteratur«, Halle 1905); »Der Weihnachtfund« (Berl. 1855, 2. Aufl. 1862); »Erzählungen« (Stuttg. 185861, 3 Bde.)
 
96) Ladenschluß
 ... 40 von der Ortspolizeibehörde zu bestimmenden Tagen (meist um die Weihnachtszeit, bei Jahrmärkten, Kirchweihen, Messen etc.), jedoch bis spätestens 10 Uhr
 
97) Lametta
 ... hauptsächlich als Christbaum - L . zum Schmücken der Weihnachtsbäume und wird für diesen Zweck auch gefärbt, indem man sie
 
98) Lauff
 ... von O. Eckmann, das. 1897, 2. Aufl. 1898), »Advent«, drei Weihnachtsgeschichten (das. 1898, 4. Aufl. 1901), »Die Geißlerin«, epische Dichtung (das.
 
99) Lewald
 ... Deutschland und Frankreich« (das. 1880); »Helmar«, Roman (das. 1880); »Zu Weihnachten«, drei Erzählungen (das. 1880); »Vater und Sohn«, Novelle (das. 1881);
 ... die Frauen«, Briefe (das. 1870, 2. Aufl. 1875); »Nella, eine Weihnachtsgeschichte« (das. 1870); »Die Erlöserin«, Roman (das. 1873, 3 Bde.); »Benedikt«
 
100) Lostage
 ... im allgemeinen die »Zwölften«, d. h. die zwölf Tage zwischen Weihnachten (dem frühern Jahresanfang) und Epiphanias, weil nach der bis in
 ... Martin (10. November), Lucia (13., früher 25. Dezember), Weihnachten . In frühern Zeiten, in denen neben Bibel und Gebetbuch
 
Artikel 91 bis 100 von 183 Nächste Treffer Vorherige Treffer